Active Chemistry Self-Cure

Composition of Tokuyama Universal Bond


The Science Behind "Active Chemistry" Self Cure

The versatility of Tokuyama Universal Bond is credited to the separation of its 3D-SR Monomer, found in Bond Force, γ-MPTES, and MTU-6 compounds that provide high-adhesive performance with the various substrates (enamel, dentin, metals, composite resins, zirconia, ceramics, alumina and etc.)

Polymerization Initiator

Active-Chemistry is superior to the ocnventional chemical polymerization initiator, a benzoyl peroxide/amine system, because it exhibits high catalytic activity under strongly acidic conditions. A thin bonding layer formed after air blow becomes hard because of rapid progression of polymerization and curing on its adhesive interface (self-cure), when it comes into contact with resin materials such as composite resin.

Active-Chemistry Technology

Adhesion to Enamel and Dentin

3rd Generation 3D-SR Monomer

The 3D-SR monomer have several functional groups that can interact with calcium and polymerizing groups per molecule. Tokuyama UNIVERSAL BOND has an enhanced response to tooth calcium and durability by using a new 3rd generation 3D-SR monomer.

3D monomer #2
  1. Strong bonding to tooth structure through multi-point bounding.
  2. Improved adhesion layer strength through three-dimensional cross-linking reactions.
3D monomer

Adhesion to Zirconia/Alumina

The phosphate group of the new 3D-SR monomer forms chemical bonds with the zirconia/alumina surface for adhesion.

Adhes to ZIronica

Adhesion to Glass-Ceramics/Resin

The alkoxy group in γ-MPTES reacts with water to form a silanol group and next, a siloxane bond is formed by a dehydration and condenstation reaction with the silanol group on the ceramic surface. Additionally, the methacryl group co-polymerizes with monomers in dental curable materials. Since the new silane coupling agent, γ-MPTES is more stable in the bottle than the conventional one (γ-MPS), the adhesion effect lasts for a long time.

Adhesh to ceramics resin2
Adhesh to ceramics resin

Adhesion to Precious Metal

The sulfur atom in the thiouracil group of MTU-6 interacts with precious metal (covalent bond) and additionally, the methacryl group co-polymerizes with monomers in dental-curable materials.


Adhesion to Non-Precious Metal

The phosphate group of new 3D-SR monomer interacts with the oxygen atom of the passive layer of a non-precious metal surface (hydrogen bond) and additionally, the methacryl group co-polymerizes with monomers in dental curable materials.

Adhes to no precious metal